

NC20 *BANK CAPACITOR PROTECTION RELAY* THE COMPREHENSIVE SOLUTION FOR CAPACITOR BANK PROTECTION

— Application

The relay type NC20 provides protection of shunt capacitor banks and harmonic filter circuits.

- The capacitor banks may have the following configurations:
- Single Wye grounded.
- Single Wye ungrounded (with a resistor on the output of the neutral unbalance voltage transformer in order to develop the appropriate input current for the unbalance protection).
- Double Wye ungrounded.

The capacitor banks may be: internally/externally fused or fuseless capacitor units.

A suitable compensation method is provided to compensate the inherent unbalance neutral current

Protection 37, 49 and 50/51 (RMS) are based on RMS value measurement of the three phase currents (fundamental and harmonics up to the 11th)

- Protective & control functions

27 37 46 46N	Undervoltage Undercurrent Phase unbalance Neutral unbalance overcurrent with inherent unbalance compensation
49	Thermal image (for series reactor)
50/51	Fundamental frequency phase overcurrent
50/51	RMS phase overcurrent
50N/51N	Computed residual overcurrent
59	Overvoltage
BF	Breaker Failure
TD	Discharge Timer

Measuring inputs

- Three phase current inputs and one unbalance neutral current input, with nominal currents independently selectable at 1 A or 5 A through DIP-switches.
- Three phase voltage inputs with programmable nominal voltages within range 50...130 V ($U_{\rm R}$ =100 V).

— Construction

According to the hardware configurations, the NC20 protection relay can be shipped in various case styles depending on the required mounting options (flush, projecting mounting, rack or with separate operator panel).

— Output relays

Six output relays are available (two changeover, three make and one break contacts); each relay may be individually programmed as normal state (normally energized, de-energized or pulse) and reset mode (manual or automatic).

A programmable timer is provided for each relay (minimum pulse width). The user may program the function of each relay according to a matrix (tripping matrix) structure.

— Binary inputs

Two binary inputs are available with programmable active state (active-ON/active-OFF) and programmable timer (active to OFF/ ON or ON/OFF transitions).

Several presettable functions can be associated to each input.

— Modular design

In order to extend I/O capability, the NC20 hardware can be customized through external auxiliary modules:

- MRI Output relays and LEDs (provided with NA80)
- MID16 Binary inputs
- MCI 4...20 mA converters
- MPT Pt100 probe inputs.

— Blocking input/outputs

One output blocking circuit and one input blocking circuit are provided.

The output blocking circuits of one or several Pro_N relays, shunted together, must be connected to the input blocking circuit of the protection relay, which is installed upstream in the electric plant. The output circuit works as a simple contact, whose condition is detected by the input circuit of the upstream protection relay.

The block circuit is feeded internally to the relay by the input. For long distances, when high insulation and high EMC immunity is essential, a suitable pilot wire to fiber optic converter (BFO) is available.

— Firmware updating

The use of flash memory units allows on-site firmware updating.

— Two set point profiles (A,B)

Two independent groups of settings are provided. Switching from profiles may be operated by means of MMI, binary input and communication.

- MMI (Man Machine Interface)

The user interface comprises a membrane keyboard, a backlight LCD alphanumeric display and eight LEDs.

The green ON LED indicates auxiliary power supply and self diagnostics, two LEDs are dedicated to the Start and Trip (yellow for Start, red for Trip) and five red LEDs are user assignable.

– Communication

Multiple communication interfaces are implemented:

- One RS232 local communication front-end interface for communication with ThySetter setup software
- Two back-end interfaces for communication with remote monitoring and control systems by:
 - RS485 port ModBus® RTU, IEC 60870-5-103 or DNP3 protocol,
 - Ethernet port (RJ45 or optical fiber) ModBus/TCP protocol.

Programming and settings

All relay programming and adjustment operations may be performed through MMI (Keyboard and display) or using a Personal Computer with the aid of the ThySetter software.

The same PC setup software is required to set, monitor and configure all $\ensuremath{\mathsf{Pro}_N}$ devices.

- Full access to the available data is provided:
- Read status and measures
- Read/edit settings (on-line or off-line edit)
- Two session level (User or Administrator) with password for sensible data access are provided.

ThySetter - V3.6.1				1	
ile Comunicazione Procedure Funzioni Aggiornamer	ti Funzioni opzionali Preferenze	Aiuto			-
	60641 30	@ X (5		
Dispositivi	Descrizione	Parametro	Valore	Um	Stato
NATO-CAD f	Abilitazione I*	I» Enable	OFF		File
← Set	Tipo di caratteristica t+	I+Curve	INDIPEND .		File
y → bes	Modo funzionamento ICLP>	ICLP - Mode	OFF		File
🔶 🖾 Ingressi	Tempo di attivazione ICLP>	ICLP>			File
► 🔄 Uscite ► 🔄 Led	Valore		0.10		File
- 3 Rele anomalia	Ritardo di ripristino I>	DRES			File
🖙 🛄 MMI	Valore		0.00		File
 Selezione configurazione Parametri configurazione A 	Blocco logico I=	I-BLKI	OFF		File
🛉 🛄 Massima corrente - 50/51	Blocco selettivo ingresso I*	I*BLK2IN	OFF		File
	Blocco selettivo uscita la	INBLK2OUT	OFF		File
P Tempo indipendente	Ritenuta seconda armonica I>	I>2ndh-REST	OFF		File
🔶 🚞 Tempo dipendente	Mancata apertura I>	ÞBF	OFF		File
← 21 Sogia I>> ← 21 Sogia I>>	Rele avviamento D	DST-K	K1,K2		File
Massima corrente residua - 50N/51N	Rele intervento Þ	PIRK	К3		File
🗢 🛄 Ritenuta di seconda armonica - 2ndh-Ri		PST-L	11		File
 Supervisione circuito interrutiore - 74TC: Blocco selettivo - BLOCK2 	LEDs intervento P	PIRA	1.6		File
Mancata apertura - BF			-		
Parametri configurazione B					_
PLC Monitoraggio interruttore	Tipo di caratteristica l>				×
🖙 🛄 Monitoraggio TA - 74CT					_
Scato remoto Stato diagnostica filo pilota					
Se Misure mediate	INDIPENDENTE				-
🗢 过 Oscillografia	IEC/BS B				^
 Parametri di comunicazione Comandi 	IEC/BS C				н
- Test	ANSI/JEEE MI				
Inizio/Fine Tarature	ANSI/JEEE VI				

Self diagnostics

All hardware and software functions are repeatedly checked and any anomalies reported via display messages, communication interfaces, LEDs and output relays.

Anomalies may refer to:

- Hw faults (auxiliary power supply, output relay coil interruptions, MMI board...).
- Sw faults (boot and run time tests for data base, EEPROM memory checksum failure, data BUS,...).
- · Pilot wire faults (break or short in the wire).
- · Circuit breaker faults.

Metering

NC20 provides metering values for voltages, phase and neutral currents, making them available for reading on a display or to communication interfaces.

Input signals are sampled 24 times per period and the RMS value of the fundamental component is measured using the DFT (Discrete Fourier Transform) algorithm and digital filtering.

The RMS value of phase currents are also calculated taking into account the contribution of fundamental and harmonic up to eleventh order.

On the base of the direct measurements, the minimum-peakfixed-rolling demand, mean-minimum-maximum absolute phase currents are processed.

The measured signals can be displayed with reference to nominal values or directly expressed in amperes and volts.

Event storage

Several useful data are stored for diagnostic purpose; the events are stored into a non volatile memory.

They are graded from the newest to the older after the "Events reading" command (ThySetter) is issued:

Sequence of Event Recorder (SER)

The event recorder runs continuously capturing in circular mode the last three hundred events upon trigger of binary input/output.

Sequence of Fault Recorder (SFR)

The event recorder runs continuously capturing in circular mode the last twenty events upon trigger of binary input/output and/or element pickup (start-trip).

Trip counters

Digital Fault Recorder (Oscillography)

Upon trigger of tripping/starting of each function or external signals, the relay records in COMTRADE format:

- Oscillography with instantaneous values for transient analysis.
- RMS values for long time periods analysis.
- · Logic states (binary inputs and output relays).
- Note A license for Digital Fault Recorder function is required, the records are stored in nonvolatile memory

Control and monitoring

- Several predefined functions are implemented:
- · Circuit Breaker commands and diagnostic
- · Activation of two set point profiles
- CTs monitoring (74CT)
- Logic selectivity
- · Cold load pickup (CLP) with block or setting change
- Trip circuit supervision (74TCS)
- Remote tripping

Moreover user defined logic must be customized in accordance with IEC 61131-3 protocol by means programmable logic controller (PLC).

Circuit Breaker commands and diagnostic

Several diagnostic, monitoring and control functions are provided:

- Health thresholds can be set; when the accumulated duty $(\Sigma I \text{ or } \Sigma I^2 t)$, the number of operations or the opening time exceeds the threshold an alarm is activated.
- Breaker failure (BF); breaker status is monitored by means 52a-52b and/or through line current measurements.
- Trip Circuit Supervision (74TCS).
- Breaker control; opening and closing commands can be carried out locally or remotely.
- · Breaker inhibition; closing operations are inhibited during the time that $t_{\rm D}$ is in progress.

Logic selectivity

With the aim of providing a fast selective protection system some protective functions may be blocked (pilot wire accelerated logic). To guarantee maximum fail-safety, the relay performs a run time monitoring for pilot wire continuity and pilot wire shorting. Exactly the output blocking circuit periodically produces a pulse, having a small enough width in order to be ignored as an effective blocking signal by the input blocking circuit of the upwards protection, but suitable to prove the continuity of the pilot wire. Furthermore a permanent activation (or better, with a duration longer than a preset time) of the blocking signal is identified, as a warning for a possible short circuit in the pilot wire or in the output circuit of the downstream protection.

Cold Load Pickup (CLP)

The Cold Load Pickup feature can operate in two following modes:

- Each protective element can be blocked for a programmable time.
- Each threshold can be increased for a programmable time.
- It is triggered by the circuit breaker closing.

S P E C I F I C A T I O N S

GENERAL

	GENERAL		
_	Mechanical data Mounting: flush, projecting, rack Mass (flush mounting case)	or separated op	erator panel 2.0 kg
	Insulation tests Reference standards High voltage test 50Hz Impulse voltage withstand (1.2/50 μ Insulation resistance	s)	EN 60255-5 2 kV 60 s 5 kV >100 MΩ
_	Voltage dip and interruption Reference standards	E	N 61000-4-29
	EMC tests for interference imm 1 MHz damped oscillatory wave Electrostatic discharge Fast transient burst (5/50 ns) Conducted radio-frequency fields Radiated radio-frequency fields High energy pulse Magnetic field 50 Hz Damped oscillatory wave Ring wave Conducted common mode (0150 kHz)	EN 60255-22-1 EN 60255-22-2 EN 60255-22-4 EN 60255-22-6 EN 60255-4-3 EN 61000-4-5 EN 61000-4-8 EN 61000-4-12 EN 61000-4-12	1 kV-2.5 kV 8 kV 4 kV 10 V/m 2 kV 1 kA/m 2.5 kV 2 kV 10 V
	Emission Reference standards Conducted emission 0.1530 MHz Radiated emission 301000 MHz	EN 61000-6-4 (ex	EN 50081-2) Class A Class A
_	Climatic tests Reference standards IEC 6	0068-x, ENEL R (CLI 01, CEI 50
_	Mechanical tests Reference standards	EN 60255-21	-1, 21-2, 21-3
	Safety requirements Reference standards Pollution degree Reference voltage Overvoltage Pulse voltage Reference standards Protection degree: • Front side • Rear side, connection terminals		EN 61010-1 3 250 V III 5 kV EN 60529 IP52 IP20
	Environmental conditions Ambient temperature Storage temperature Relative humidity Atmospheric pressure		-25+70 °C -40+85 °C 1095 % 70110 kPa
_	Certifications Product standard for measuring rel CE conformity • EMC Directive • Low Voltage Directive Type tests	ays	EN 50263 89/336/EEC 73/23/EEC IEC 60255-6
	COMMUNICATION INTERF	ACES	
	Local PC RS232 Network:		19200 bps
	• RS485	120	057600 bps

• RS485		120057600 bps
 Ethernet 100Ba 	seT	100 Mbps
Protocol	ModBus® RTU/IEC 608	70-5-103/DNP3, TCP/IP

INPUT CIRCUITS

	INPUT CIRCUITS	
_	Auxiliary power supply Uaux Nominal value (range) 2448 Vac/do Operative range (each one of the above	
	Power consumption: • Maximum (energized relays, Ether • Maximum (energized relays, Ether	net TX) 10 W (20 VA)
	Phase current inputs Nominal current In 1 A or 5 A Permanent overload 1 A or 5 A Thermal overload (1s) 1 A or 5 A Rated consumption (for any phase) 1 A or 5 A	selectable by DIP Switches 25 A 500 A $\leq 0.002 \text{ VA} (I_n = 1 \text{ A})$ $\leq 0.04 \text{ VA} (I_n = 5 \text{ A})$
_	Permanent overload Thermal overload (1 s) Rated consumption	ut A selectable by DIP Switch 25 A 500 A \leq 0.006 VA ($I_{En} = 1 A$) \leq 0.012 VA ($I_{En} = 5 A$)
	Voltage inputs Reference voltage $U_{\rm R}$ Nominal voltage $U_{\rm n}$ Permanent overload 1s overload Rated consumption (for any phase)	$\begin{array}{l} 100 \text{ V} \\ 50130 \text{ V} \text{ selectable by sw} \\ 1.3 \ U_{\text{R}} \\ 2 \ U_{\text{R}} \\ \leq 0.5 \text{ VA} \end{array}$
	Binary inputs Quantity Type Max permissible voltage Max consumption, energized	2 dry inputs 19265 Vac/19300 Vdc 3 mA
	Block input (Logic selectivity) Quantity Type polarized wet input (powered Max consumption, energized	1 I by internal isolated supply) 5 mA
	OUTPUT CIRCUITS	
	Output relays K1K6 Quantity • Type of contacts K1, K2 • Type of contacts K3, K4, K5 • Type of contacts K6 Nominal current Nominal voltage/max switching volta Breaking capacity:	6 changeover (SPDT, type C) make (SPST-NO, type A) break (SPST-NC, type B) 8 A age 250 Vac/400 Vac
	• Direct current (L/R = 40 ms) • Alternating current (λ = 0,4) Make Short duration current (0,5 s)	50 W 1250 VA 1000 W/VA 30 A
_	Block output (Logic selectivity) Quantity Type	1 optocoupler
_	LEDs Quantity • ON/fail (green) • Start (yellow) • Trip (red) • Allocatable (red)	8 1 1 5

GENERAL SETTINGS

<u>GENERAL SETTINGS</u>	
 Rated values Relay nominal frequency (f_n) Relay phase nominal current (I_n) Phase CTs nominal primary current (I_{np}) Relay unbalance nominal current (I_{Nn}) Unbalance CT nominal primary current (I_N Relay nominal voltage (U_n) Line VT primary nominal voltage (U_{np}) 	50, 60 Hz 1 A, 5 A 1 A10 kA 1 A, 5 A 1 A10 kA 50130 V 50 V500 kV
 Compensation - 46N Compensation current (<i>I</i>_C) Compensation angle (<i>Phi</i>_C) Automatic compensation enable 	0.010.50 / _{Nn} 0359 ° 0N/0FF
 Binary input timers ON delay time (<i>t</i>_{IN10N}, <i>t</i>_{IN20N}) OFF delay time (<i>t</i>_{IN10FF}, <i>t</i>_{IN20FF}) Logic 	0.00100.0 s 0.00100.0 s Active-ON/Active-OFF
 Relay output timers Minimum pulse width (t_{TR}) 	0.0000.500 s
PROTECTIVE FUNCTIONS	
 Base current IB Base current (I_B) 	0.102.50 l _n
— Thermal protection with RTD thermo	metric probes - 26
 Alarm Alarm threshold θ_{ALx} (x=18) Operating time t_{θALx} (x=18) 	0200 °C 0100 s
 Trip Trip threshold θ>_x (x=18) Operating time t_θ>_x (x=18) Note: The element becomes available when the MF connected to Thybus 	0200 °C 0100 s 77 module is enabled and
 Undervoltage - 27 Common configuration: • 27 Operating logic (Logic27) 	AND/OR
<i>U< Element</i> • <i>U<</i> Curve type (<i>U<</i> Curve)	DEFINITE, INVERSE [1]
Definite time 27 First threshold definite time (U<def)< li=""> U<def (tu<def)<="" li="" operating="" time=""> </def></def)<> Inverse time	0.051.10 <i>U</i> _n 0.03100.0 s
 27 First threshold inverse time (U<inv)< li=""> U<inv (tu<inv)<="" li="" operating="" time=""> </inv></inv)<>	0.051.10 <i>U</i> _n 0.10100.0 s
U<< Element Definite time	
 27 Second threshold definite time (U<<c< li=""> U<<def (t<sub="" operating="" time="">U<<def)< li=""> </def)<></def></c<>	lef) 0.051.10 U _n 0.03100.0 s
Note [1] - The mathematical formula for INVERSE cut $t = 0.75 \cdot t_{U < inv} / [1 - (U/U < inv)]$	
where: t = trip time (in seconds) t _U < _{inv} = operating time setting (in seconds) U = input voltage U< _{inv} = threshold setting	
 I<def li="" logic<="" operating=""> Definite time </def>	OR ^[2]
 37 First threshold definite time (<i>I</i><_{def}) <i>I</i><_{def} Operating time (<i>t</i><_{def}) 	0.051.00 / _n 0.04200.0 s
<i>I<< Element</i> • <i>I<<</i> def Operating logic	AND ^[3]

Definite time

 37 Second threshold definite time (/<<_{def}) 	0.051.00 / _n
 <i>I</i><<def (<i="" operating="" time="">t<<def)< li=""> </def)<></def>	0.04200.0 s

Note [1] - The 37 protection is based on RMS value measurement of three phase currents (the computed RMS value takes into account the contribution of fundamental and harmonic up to eleventh order.)

Note [2] - Starting of I<_{def} threshold takes place when at least one phase currents is undershot.

Note [3] - Starting of I<<def threshold takes place when all three phase currents are undershot.

Discharge time (TD) TD discharge time (t_D)

0.1...100.0 min

Note - When enabled it is started by the second threshold of the undercurrent protection (I<<).

— Phase unbalance - 46

l ₂ > Element	
 <i>I</i>_{2CLP}> Activation time (<i>t</i>_{2CLP}>) 	0.00100.0 s
 <i>I</i>₂>Reset time delay (<i>t</i>₂>RES) Definite time 	0.00100.0 s
• 46 First threshold definite time $(I_{2>def})$	1150 %
• <i>I</i> _{2>def} within CLP (<i>I</i> _{2CLP>def})	1150 %
• $I_{2>def}$ Operating time ($t_{2>def}$)	0.0560.0 s
l ₂ >> Element	
 <i>I</i>_{2CLP}>> Activation time (<i>t</i>_{2CLP}>>) 	0.00100.0 s
 <i>I</i>₂>> Reset time delay (<i>t</i>₂>>_{RES}) Definite time 	0.00100.0 s
• 46 Second threshold definite time (<i>I</i> ₂ >> _{def})	1150 %
• I_{2} >> def within CLP (I_{2CLP} >> def)	1150 % 0.0560.0 s
• $I_{2>>def}$ Operating time ($t_{2>>def}$)	0.0500.0 \$
- Neutral unbalance current - 46N I _{N>AL} Element	
 I_{NCLP>AL} Activation time (t_{NCLP>AL}) Definite time 	0.00100.0 s
• 46N Alarm threshold definite time (<i>I</i> _{N>ALdef})	0.011.00 / _{Nn}
 I_{N>ALdef} within CLP (I_{NCLP>ALdef}) I_{N>ALdef} Operating time (t_{N>ALdef}) 	0.011.00 / _{Nn} 0.03500 s
	0.00
$I_{\rm N>}$ Element	DEFINITE
 IN> Curve type (IN> Curve) IEC/BS A, B, C, ANS 	DEFINITE I/IEEE MI. VI. EI
 I_{NCLP}> Activation time (t_{NCLP}) 	0.00100.0 s
<i>Definite time</i> • 46N First threshold definite time (<i>I</i> _{N>def})	0.012.00 / _{Nn}
 Instant state and definite time (Instant state) Instant state and definite time (Instant state) 	0.012.00 / _{Nn}
 <i>I</i>_{N>def} Operating time (<i>t</i>_{N>def}) 	0.0350.0 s
Inverse time 46N First threshold inverse time (I_{N>inv}) 	0.011.00 / _{Nn}
 IN>inv within CLP (INCLP>inv) 	0.011.00 / _{Nn}
 <i>I</i>_{N>inv} Operating time (<i>t</i>_{N>inv}) 	0.0260.0 s
I _{N>>} Element	
• I_{NCLP} >> Activation time (t_{NCLP} >>)	0.00100.0 s
Definite time • 46N Second threshold definite time (I _{N>>def})	0.01 0.00 /
• $I_{N>>def}$ within CLP ($I_{NCLP>>def}$)	0.012.00 / _{Nn} 0.012.00 / _{Nn}
• $I_{N>>def}$ Operating time ($t_{N>>def}$)	0.0350.0 s
- Thermal image - 49	
Common configuration:	
• Initial thermal image $\Delta \Theta_{IN} (Dth_{IN})$	0.01.0 <i>∆</i> θ _B
 Reduction factor at inrush (K_{INR}) Thermal time constant τ (T) 	1.03.0 1200 min
 Dth_{CLP} Activation time (<i>t</i>_{Dth}_{CLP}) 	0.00100.0 s
DthAL1 Element	
 49 First alarm threshold Δθ_{AL1} (Dth_{AL1}) 	0.31.0 <i>∆</i> θ _B
	$0.31.0\varDelta\theta_B$
 49 First alarm threshold Δθ_{AL1} (<i>Dth</i>_{AL1}) <i>DthAL2 Element</i> 49 Second alarm threshold Δθ_{AL2} (<i>Dth</i>_{AL2}) 	0.31.0 ⊿θ _B 0.51.2 ⊿θ _B

Dth> Element	
 49 Trip threshold Δθ (Dth>) 	1.1001.300 <i>∆</i> θ _B

Note - The 49 protection is based on maximum of the RMS value measurement of three phase currents (the computed RMS value takes into account the contribution of fundamental and harmonic up to eleventh order.)

— Phase overcurrent - 50/51 Fundamental I>> Element	
 ICLP>> Activation time (t_{CLP>>}) I>> Reset time delay (t>>RES) 	0.00100.0 s 0.00100.0 s
Definite time • 50/51 Second threshold definite time (<i>I</i> >> _{def}) • <i>I</i> >> _{def} within CLP (<i>I</i> _{CLP>>def}) • <i>I</i> >> _{def} Operating time (<i>t</i> >> _{def})	0.10040.0 <i>I</i> _n 0.10040.0 <i>I</i> _n 0.0310.00 s
 I>>> Element I_{CLP}>>> Activation time (t_{CLP>>>}) I>>> Reset time delay (t>>>_{RES}) Definite time 	0.00100.0 s 0.00100.0 s
 50/51 Third threshold definite time (/>>>def) />>>def within CLP (/_{CLP>>>def}) />>>def Operating time (t>>>def) 	0.10040.0 <i>I</i> _n 0.10040.0 <i>I</i> _n 0.0310.00 s
— Phase overcurrent - 50/51 RMS ^[1] I>AI element	
 I_{CLP>AL} Activation time (t_{CLP>AL}) Definite time 	0.00100.0 s
 50/51 Alarm threshold definite time (<i>I</i>>ALdef) <i>I</i>>ALdef within CLP (<i>I</i>_{CLP}>ALdef) <i>I</i>>ALdef Operate time (<i>I</i>>ALdef) 	0.10010.00 / _n 0.10010.00 / _n 0.03200 s
<i>I> Element</i> • <i>I></i> Curve type (<i>I></i> Curve) IEC/BS A, B, C, ANS	DEFINITE SI/IEEE MI, VI, EI
	CAPACITOR ^[2]
 I_{CLP} > Activation time (t_{CLP}) I> Reset time delay (t>_{RES}) Definite time 	0.00100.0 s 0.00100.0 s
 50/51 First threshold definite time (I>def) I>def within CLP (I_{CLP>def}) I>def Operating time (t>def) Inverse time 	0.10010.00 / _n 0.10010.00 / _n 0.03200 s
 50/51 First threshold inverse time (<i>I</i>>inv) <i>I</i>>inv within CLP (<i>I</i>_{CLP>inv}) 	0.10010.00 / _n 0.10010.00 / _n

Note [1] - The 50/51 RMS protection is based on RMS value measurement of three phase currents (the computed RMS value takes into account the contribution of fundamental and harmonic up to eleventh order)

Note [2] - The mathematical formula for CAPACITOR curves is:

$$t = \frac{t_{>\text{inv}} \cdot 50000}{[1.1 \cdot (I_{\text{RMS}}/I_{>\text{inv}})^{17}-1]} + 0.1$$

where:

6

t = trip time (in seconds) t_{sinv} = operating time setting (in seconds) I_{RMS} = input current I_{sinv} = threshold setting

— Residual overcurrent - 50N/51N I_E> Element

I>inv Operating time (t>inv)

 I_E> Curve type (I_E>Curve) 	DEFINITE
IEC/BS /	A, B, C, ANSI/IEEE MI, VI, EI
 <i>I</i>_{ECLP}> Activation time (<i>t</i>_{ECLP}>) <i>I</i>_E> Reset time delay (<i>t</i>_E>_{RES}) 	0.00100.0 s 0.00100.0 s
Definite time	

 50N/51N First threshold definite time (/_{E>def}) 	0.10010.00 <i>I</i> n
 I_{E>def} within CLP (I_{ECLP>def}) 	0.10010.00 <i>I</i> n
 <i>I</i>_{E>def} Operating time (<i>t</i>_{E>def}) 	0.04200 s
Inverse time	

• 50N/51N First threshold inverse time ($I_{E>inv}$) 0.100...10.00 I_n

 <i>I</i>_{E>inv} within CLP (<i>I</i>_{ECLP>inv}) <i>I</i>_{E>inv} Operating time (<i>t</i>_{E>inv}) 	0.10010.00 <i>I</i> _n 0.0260.0 s
I _E >> Element • I _{ECLP} >> Activation time (t _{ECLP>>}) • I _E >> Reset time delay (t _E >> _{RES})	0.00100.0 s 0.00100.0 s
Definite time • 50N/51N Second threshold definite time (<i>I</i> _{E>>def}) • <i>I</i> _{E>>def} within CLP (<i>I</i> _{ECLP>>def}) • <i>I</i> _{E>>def} Operating time (<i>t</i> _{E>>def})	0.10040.0 <i>I</i> n 0.10040.0 <i>I</i> n 0.0310.00 s
 I_E>>> Element I_{ECLP}>>> Activation time (t_{ECLP}>>>) I_{ECLP}>>> Reset time delay (t_E>>>Res) Definite time 50N/51N Third threshold definite time (I_E>>>def) 	0.00100.0 s 0.00100.0 s 0.10040.0 /n
 <i>I</i>_{ECLP}>>>_{def} within CLP (<i>I</i>_{ECLP>>>def}) <i>I</i>_{ECLP}>>>_{def} Operating time (<i>t</i>_E>>>_{def}) 	0.10040.0 <i>I</i> _n 0.0310.00 s
Note - The residual current $I_{\rm EC}$ is calculated from the vector sum of the three phase currents.	
 Overvoltage - 59 59 Operating logic (<i>Logic</i>59) 	AND/OR

U> Element • U> Curve type (U>Curve) Definite time • 59 First threshold definite time (U> _{def}) • U> _{def} Operating time (t _{U>def}) Inverse time • 59 First threshold inverse time (U> _{inv}) • U> _{inv} Operating time (t _{U>inv})	DEFINITE, INVERSE ^[1] 0.501.50 U _n 0.03100.0 s 0.501.50 U _n 0.10100.0 s
U>> Element Definite time • 59 Second threshold definite time (U>> ₀ • U>> _{def} Operating time (t _U >> _{def})	_{def}) 0.501.50 <i>U</i> _n 0.03100.0 s

Note [1] - The mathematical formula for INVERSE curves is:

$$t = \frac{0.5 \cdot t_{\text{U>inv}}}{[(U/U >_{\text{inv}}) - 1]}$$

where:

0.02...60.0 s

t = trip time (in seconds) t_{U>inv} = operating time setting (in seconds) U = input voltage U_{>inv} = threshold

— Circuit Breaker supervision

_	Number of CB trips threshold (<i>N.Open</i>) Cumulative CB tripping currents threshold (<i>Suml</i>) CB opening time for Σ ¹² t computation (t_{break}) Cumulative CB tripping Σ ¹² t threshold (<i>Suml^2t</i>) CB Max allowed opening time (t_{break})	010000 05000 / _n 0.051.00 s 05000 (/ _n) ² ·s 0.0501.000 s
	Pilot wire diagnostic BLOUT1 Diagnostic pulses period (<i>PulseBLOUT1</i>)	
		-5-10-60-120 s
	BLIN1 Diagnostic pulses window (<i>PulseBLIN1</i>)	
	OFF - 0.1-1	-5-10-60-120 s
—	Breaker failure - BF	
	BF Phase current threshold (<i>I</i> _{BF} >)	0.051.00 <i>I</i> n
	BF Residual current threshold (<i>I</i> EBF>)	0.051.00 <i>I</i> n
	BF Time delay (t _{BF})	0.0610.00 s
	CT supervision - 74CT	
	74CT Threshold (<i>S</i> <)	0.100.95
	74CT Overcurrent threshold (<i>I</i> *)	0.101.00 /n
	$S < Operating time (t_S <)$	0.03200 s
		0.00200 S

DTheta

UL

Selective block - BLOCK2 Selective block IN:

- BLIN Max activation time for phase protections (t_{B-lph}) 0.10...10.00 s
- BLIN Max activation time for ground protections (t_{B-IE}) 0.10...10.00 s

Selective block OUT:

- BLOUT Dropout time delay for phase protections (t_{F-lph})
- 0.00...1.00 s • BLOUT Dropout time delay for phase protections (*t*_{F-IE})
- 0.00...1.00 s • BLOUT Dropout time delay for ground and phase protections 0.00...1.00 s $(t_{\rm F-lph/lE})$

METERING & RECORDING

Measured parameters

Direct:

- Frequency
- RMS value of fundamental component for phase currents IL1, IL2, IL3
- RMS value for phase currents^[1] ILIRMS, IL2RMS, IL3RMS
- RMS value of fundamental component for input voltages U_{L1} , U_{L2} , U_{L3}
- RMS value of fundamental component for unbalance neutral current IN
- Phase displacement angle of I_N with respect to $I_{L1}(\varphi_N)$ PhiN

Calculated:

- Thermal image $\Delta \theta$
- RMS value of fundamental component for unbalance compensated current INC
- Phase displacement angle of $I_{\rm NC}$ with respect to $I_{\rm L1}(\varphi_{\rm NC})$ Phi_{NC}
- RMS value of fundamental component for calculated residual current IFC.
- Maximum RMS value between /L1RMS, /L2RMS, /L3RMS /Lmax-RMS
- Minimum current between *I*_{L1RMS}, *I*_{L2RMS}, *I*_{L3RMS} I min-RMS
- Average current between IL1RMS, IL2RMS, IL3RMS I_{L-RMS}
- Maximum voltage between UL1-UL2-UL3 U_{Lmax}
- Average voltage between (UL1+UL2+UL3)/3
- Harmonic distortion factor THD-L1, THD-L2, THD-L3

Demand phase:

- · Phase fixed RMS currents demand IL1FIX, IL2FIX, IL3FIX
- · Phase rolling RMS currents demand IL1ROL, IL2ROL, IL3ROL
- Phase peak RMS currents demand IL1MAX, IL2MAX, IL3MAX
- Phase minimum RMS currents demand *I*_{L1MIN}, *I*_{L2MIN}, *I*_{L3MIN}

Note [1] - The computed RMS values takes into account the contribution of harmonic up to eleventh order.

_	Event recording (SER) Number of events Recording mode	300 circular
	Trigger: • Output relays switching • Binary inputs switching • Setting changes	K1K6K10 IN1, IN2INx
	Data recorded: • Event counter (resettable by ThySetter) • Event cause binary input/output relay/s • Time stamp	010° setting changes Date and time
_	Fault recording (SFR) Number of faults Recording mode	20 circular
	<i>Trigger:</i> • Output relays activation (OFF-ON transition) • External trigger (binary inputs) • Element pickup (OFF-ON transition)	K1K6K10 IN1, IN2INx Start/Trip
	Data recorded: • Fault counter (resettable by ThySetter) • Fundamental component currents /L1r, /L2r, /L	010 ⁹ _{3r} , / _{Nr} , / _{NCr} , / _{ECr}

- RMS phase currents /L1RMS-r, /L2RMS-r, /L3RMS-r
- $U_{L1r}, U_{L2r}, U_{L3r}$ Fundamental frequency input voltages
- Thermal image DTheta-r
- Phase displacement angle of I_{NC} with respect to I_{L1} (φ_{NC}) Phi_{NCr} • Phase displacement angle of I_N with respect to $I_{L1}(\varphi_N)$ *Phi*_{Nr}

start, trip, binary input

- Event cause
- Binary inputs state IN1, IN2...INx • Output relays state
- K1...K6...K10 Fault cause info (operating phase) L1, L2, L3
- Date and time Time stamp

Digital Fault Recorder (Oscillography)

Digital Fault necoluer (Oscillography)		
File format Records Recording mode Sampling rate 24	COMTRADE depending on setting ^[1] circular per power frequency cycle	
Trigger setup: • Pre-trigger time • Post-trigger time • Trigger from inputs • Trigger from outputs • Communication	0.051.00 s 0.0560.00 s IN1, IN2INx K1K6K10 ThySetter	
Data recorded on sampled channelsInstantaneous currentsInstantaneous voltages	3: i _{L1} , i _{L2} , i _{L3} , i _N U _{L1} , U _{L2} , U _{L3}	
Set analog channels (Analog 112): • Frequency • Fundamental frequency currents • RMS phase currents • Displacement angles • Fundamental frequency voltages	f Il1, Il2, Il3, IN, INC, IEC Il1RMS, Il2RMS, Il3RMS Phin, Phinc Ul1, Ul2, Ul3	
Set digital channels (Digital 112): • Output relays state • Binary inputs state	K1K6K10 IN1, IN2INx	
Note [1] - For instance, with following se • Pre-trigger time • Post-trigger time • Sampled channels • Analog channels	ettings: 0.25 s 0.25 s iL1, iL2, iL3, iN, UL1, UL2, UL3 2 Juanus, Juan	

 Analog channels IL1, IL2, IL3, IL1RMS, IL2RMS, IL3RMS, IN Digital channels K1, K2, K3, K4, K5, K6, IN1, IN2

More than three hundred records can be stored when f = 50 Hz

Headquarter: 20139 Milano - Piazza Mistral, 7 - Tel. +39 02 574 957 01 ra - Fax +39 02 574 037 63 Factory: 35127 Padova - Z.I. Sud - Via dell'Artigianato, 48 - Tel. +39 049 894 770 1 ra - Fax +39 049 870 139 0

www.thytronic.com

thytronic@thytronic.it