# Energy Management Power Analyzer Type APM14-96 "Basic Version"





Optional dual pulse output

- Alarms (visual only) V<sub>LN</sub>, An
- Optional galvanically insulated measuring inputs

#### Product Description

3-phase power analyzer with built-in programming keypad. Particularly recommended for displaying the main electrical variables. Housing for panel mounting,

#### Type Selection

| (front) protection degree      |
|--------------------------------|
| IP65, and optional RS485       |
| serial port or dual pulse out- |
| put. Parameters pro-           |
| grammable by means of          |
| CptBSoft.                      |

0 0 APM14 Inputs 400/600VLL - 5A Communication RS485 standard 4 Alimentazione Ausiliaria Uaux 24Vac - 50/60Hz 1 Uaux 48Vac - 50/60Hz 2 Uaux 115Vac - 50/60Hz 3 Uaux 230Vac - 50/60Hz 4 Uaux 18...60Vdc 5

#### Input specifications

| Rated inputs<br>Current "X-S options"<br>Current "SG-PG options"<br>Voltage | 3 (non insulated each other)<br>3 (insulated each other)<br>4                                   | Active energy "X-S option"<br>Reactive energy "X-S option"<br>Active energy "SG-PG opt." | 0.03Ato025A:±(2%FS +5DGT)<br>Class 2 (start up "I": 30mA)<br>Class 3 (start up "I": 30mA)<br>Class 1 (start up "I": 30mA) |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Accuracy (display, RS485)<br>(@25℃ ±5℃, R.H. ≤60%)                          | with CT=1 and VT=1 AV5:<br>1150W-VA-var, FS:230VLN,                                             | Reactive energy "SG-PG opt."<br>Frequency                                                | Class 2 (start up "I": 30mA)<br>±0.1Hz (48 to 62Hz)                                                                       |
|                                                                             | 400VLL; AV6: 285W-VA-var,<br>FS:57VLN, 100VLL                                                   | Additional errors<br>Humidity                                                            | ≤0.3% FS, 60% to 90% RH                                                                                                   |
| Current                                                                     | $0.25 \text{ to } 6A: \pm (0.5\% \text{ FS} + 1\text{DGT})$                                     | Temperature drift                                                                        | ≤ 200ppm/°C                                                                                                               |
| Neutral current                                                             | 0.03Ato025A:±(0.5% FS+7DGT)<br>0.25 to 6A:±(1.5% FS+1DGT)<br>0.09Ato025A:±(0.5% FS+7DGT)        | Sampling rate                                                                            | 1400 samples/s @ 50Hz<br>1700 samples/s @ 60Hz                                                                            |
| Phase-phase voltage                                                         | ±(1.5% FS +1 DGT)                                                                               | Display refresh time                                                                     | 700ms                                                                                                                     |
| Phase-neutral voltage                                                       | ±(0.5% FS + 1 DGT)                                                                              | Display                                                                                  |                                                                                                                           |
| Active and Apparent power,<br>Reactive power                                | 0.25 to 6A: ±(1% FS +1DGT);<br>0.03A to 0.25A: ±(1% FS<br>+5DGT)<br>0.25 to 6A: ±(2% FS +1DGT); | Type<br>Read-out for instant. var.<br>Read-out for energies                              | LED, 14mm<br>3x3 DGT<br>3+3+3 DGT (Max indication:<br>999 999 99.9)                                                       |

Specifications are subject to change without notice APM14 - Manual - 10-2010

- Class 1 (active energy)
- Class 2 (reactive energy)
- Accuracy ±0.5 F.S. (current/voltage)
- Power analyzer
- Display of instantaneous variables: 3x3 digit
- Display of energies: 8+1 digit
- $\bullet$  System variables and phase measurements: W, W\_{dmd}, var, VA, VA  $_{dmd}$  , PF, V, A, An, A\_{dmd} , Hz
- $\bullet$  A  $_{max}$  , A  $_{dmd\ ma\ x}$  , W  $_{dmd\ max}$  indication
- Energy measurements: kWh and kvarh
- Hour counter (5+2 DGT)
- TRMS meas. of distorted sine waves (voltages/currents)
- Power supply: 24V, 48V, 115V, 230V, 50-60Hz; 18 to 60VDC
- Protection degree (front): IP65
- Front dimensions: 96x96mm
- Optional RS422/485 serial port



### Input specifications (cont.)

| Display (cont.)<br>Read-out for hour counter     | 1+3+3 DGT (Max. indication:<br>9 999 9.99)                                                              | 120/208V <sub>L-L</sub> (AV6)<br>Current<br>Input impedance                   | 453 KΩ ±5%<br>≤ 0.02Ω<br>(PG-SG options)                                                         |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Measurements                                     | Current, voltage, power,<br>power factor, frequency,<br>energy, TRMS measurement<br>of distorted waves. | 380/660V <sub>L-L</sub> (AV5)<br>120/208V <sub>L-L</sub> (AV6)<br>Current     | $\begin{array}{l} 1 \ M\Omega \ \pm 1\% \\ 1 \ M\Omega \ \pm 1\% \\ \leq 0.02\Omega \end{array}$ |
| Coupling type<br>Crest factor                    | Direct<br>< 3, max 10A peak                                                                             | Frequency                                                                     | 48 to 62 Hz                                                                                      |
| Input impedance<br>380/660V <sub>L-L</sub> (AV5) | (X-S options)<br>1 M $\Omega$ ±5%                                                                       | Overload protection<br>Continuos voltage/current<br>For 500ms: voltge/current | 1.2 FS.<br>2 Un/36A                                                                              |

#### **RS485 Serial Port Specifications**

| RS422/RS485 (on request) |                              | Data (bidirectional)   |                              |
|--------------------------|------------------------------|------------------------|------------------------------|
| Туре                     | Multidrop                    | Dynamic (reading only) | System, phase variables and  |
|                          | bidirectional (static and    |                        | energies                     |
|                          | dynamic variables)           | Static (writing only)  | All configuration parameters |
| Connections              | 2 or 4 wires, max. distance  | Data format            | 1 bit di start , 8 data bit, |
|                          | 1200m, termination directly  |                        | no parity, 1 stop bit        |
|                          | on the instrument            | Baud-rate              | 9600 bit/s                   |
| Addresses                | 1 to 255, key-pad selectable |                        |                              |
| Protocol                 | MODBUS/JBUS                  |                        |                              |
|                          |                              |                        |                              |

#### CptBSoft software: parameter programming and reading data

CptBSoft

Multi language software to program the working parameters of the power analyzer and to read the energies and the instantaneous variables. The program runs under Windows 95/98/98SE/2000/

| Working mode | NT/XP.<br>Two different working<br>modes can be selected:<br>- management of a local<br>RS485 network;<br>- management of<br>communication from a single<br>instrument to PC (RS232); |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data access  | By means of RS485 serial port.                                                                                                                                                        |

#### Dual pulse output

| Digital outputs (on request)<br>Pulse outputs |                                 |                | Electrical life: min 2*10 <sup>5</sup> cycles<br>Mechanial life: 5*10 <sup>6</sup> cycles |
|-----------------------------------------------|---------------------------------|----------------|-------------------------------------------------------------------------------------------|
| Number of outputs                             | 2 (one for kWh one for kvarh)   | Pulse duration | ≥100ms <120ms (ON)                                                                        |
| Number of pulses                              | From 0.01 to 999 in             |                | ≥100ms (OFF)                                                                              |
|                                               | compliance with the             |                | According to EN622053-31                                                                  |
|                                               | following formula:              | Insulation     | By means of relays,                                                                       |
|                                               | [Psys max (kW or                |                | 4000 V <sub>RMS</sub> outputs to                                                          |
|                                               | kvar)*pulses (pulses/kWh        |                | measuring inputs,                                                                         |
|                                               | or kvarh)] <14400               |                | 4000 V <sub>RMS</sub> output to                                                           |
| Output type                                   | Relay                           |                | supply input.                                                                             |
|                                               | min current: 0.05A@250VAC/30VDC |                | Insulation between the two                                                                |
|                                               | max current: 5A@250VAC/30VDC    |                | outputs: 1000V <sub>RMS</sub>                                                             |



### Software functions

| Password<br>1st level<br>2nd level        | Numeric code of max. 3<br>digits; 2 protection levels<br>of the programming data<br>Password "0", no<br>protection<br>Password from 1 to 999,<br>all data are protected |        | Page 5: An, An Alarm<br>Page 6: W L1, W L2, W L3<br>Page 7: PF L1, PF L2, PF L3<br>Page 8: var L1, var L2, var L3<br>Page 9: VA L1, VA L2, VA L3<br>Page 10: VA $\Sigma$ , W $\Sigma$ , var $\Sigma$<br>Page 11: VA dmd, W dmd, Hz |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| System selection                          | 3-phase with/without n, unbal.<br>3-phase balanced<br>3-phase ARON, unbalanced<br>2-phase<br>Single phase                                                               |        | Page 12: W dmd max (*)<br>Page 13: Wh (*)<br>Page 14: varh (*)<br>Page 15: VL-L $\sum$ , PF $\sum$ ,<br>VLN Alarm                                                                                                                  |
| Transformer ratio<br>CT<br>VT<br>Filter   | 1 to 999<br>1.0 to 99.9                                                                                                                                                 |        | Page 16: A max (*)<br>Page 17: A dmd max (*)<br>Page 18: hour counter (*)<br>(*) = These variables are<br>stored in EEPROM when the                                                                                                |
| Operating range                           | 0 to 100% of the input                                                                                                                                                  |        | instrument is switched off                                                                                                                                                                                                         |
| Filtering coefficient<br>Filter action    | display scale<br>1 to 16<br>Measurements, alarms,<br>serial out. (fundamental var: V,<br>A, W and their derived ones).                                                  | Alarms | Programmable, for the VL $\sum$ and<br>An (neutral current).<br>Note: the alarm is only visual,<br>by means of LED on the front<br>of the instrument.                                                                              |
| Displaying<br>3-phase system with neutral | Up to 3 variables per page<br>Page 1: V L1, V L2, V L3<br>Page 2: V L12, V L23, V L31<br>Page 3: A L1, A L2, A L3<br>Page 4: A L1 dmd, A L2 dmd,<br>A L3 dmd            | Reset  | Independent<br>alarm (VL $\Sigma$ , An)<br>max: A dmd, W dmd<br>all energies (Wh, varh) and<br>hour counter                                                                                                                        |

# Power Supply Specifications

| Auxiliary power supply | 230VAC<br>-15 +10%, 50-60Hz<br>115VAC<br>-15 +10%, 50-60Hz<br>48VAC | Power consumption | 24VAC<br>-15 +10%, 50-60Hz<br>18 to 60VDC<br>AC: 4.5 VA<br>DC: 4W |
|------------------------|---------------------------------------------------------------------|-------------------|-------------------------------------------------------------------|
|                        | -15 +10%, 50-60Hz                                                   |                   |                                                                   |

# **General Specifications**

| Operating<br>temperature<br>Storage | 0 to +50°C (32 to 122°F)<br>(RH < 90% non condensing)<br>-30 to +60°C (-22 to 140°F) |                     | mesuring inputs and RS485.<br>4000VAC, 500VDC between<br>power supply and RS485 |
|-------------------------------------|--------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------|
| temperature                         | (RH < 90% non condensing)                                                            | Dielectric strength | 4000 VAC (for 1 min)                                                            |
| Installation category               | Cat. III (IEC 60664, EN60664)                                                        | EMC                 |                                                                                 |
| Insulation (for 1 minute)           | 4000VAC, 500VDC<br>between mesuring<br>inputs and power supply.<br>500VAC/DC between | Emissions           | EN50084-1 (class A)<br>residential environment,<br>commerce and light industry  |



# General Specifications (cont.)

| EMC (cont.)<br>Immunity    | EN61000-6-2 (class A)<br>industrial environment. | Housing<br>Dimensions (WxHxD) | 96 x 96 x 63 mm               |
|----------------------------|--------------------------------------------------|-------------------------------|-------------------------------|
| Pulse voltage (1.2/50µs)   | EN61000-4-5                                      | Material                      | ABS                           |
| Safety standards           | IEC60664, EN60664                                |                               | self-extinguishing: UL 94 V-0 |
| Approvals                  | CE, (cURus, CSA only "X"                         | Mounting                      | Panel                         |
|                            | and "S" options)                                 | Protection degree             | Front: IP65 (standard),       |
| Connections 5(6) A         | Screw-type                                       |                               | NEMA4x, NEMA12                |
| Max cable cross sect. area | 2.5 mm <sup>2</sup>                              |                               | Connections: IP20             |
|                            |                                                  | Weight                        | Approx. 400 g (pack. incl.)   |

### **Display pages**

Display variables in 3-phase systems (in a 3-phase system with neutral)

| No | 1 <sup>st</sup> variable | 2 <sup>nd</sup> variable | 3 <sup>rd</sup> variable | Note                                                                  |
|----|--------------------------|--------------------------|--------------------------|-----------------------------------------------------------------------|
| 1  | V L1                     | V L2                     | V L3                     |                                                                       |
| 2  | V L12                    | V L23                    | V L31                    | Decimal point blinking on the right of the display                    |
| 3  | A L1                     | A L2                     | A L3                     |                                                                       |
| 4  | A L1 dmd                 | A L2 dmd                 | A L3 dmd                 | dmd = demand (integration time selectable from 1 to 30 minutes)       |
| 5  | An                       | AL.n                     |                          | AL.n if neutral current alarm is active                               |
| 6  | W L1                     | W L2                     | W L3                     | Decimal point blinking on the right of the display if generated power |
| 7  | PF L1                    | PF L2                    | PF L3                    |                                                                       |
| 8  | var L1                   | var L2                   | var L3                   | Decimal point blinking on the right of the display if generated power |
| 9  | VA L1                    | VA L2                    | VA L3                    |                                                                       |
| 10 | VA system                | W system                 | var system               |                                                                       |
| 11 | VA dmd<br>(system)       | W dmd<br>(system)        | Hz<br>(system)           | dmd = demand (integration time<br>selectable from 1 to 30 minutes)    |
| 12 |                          | W dmd MAX                |                          | Maximum sys power demand                                              |
| 13 | Wh (MSD)                 | Wh                       | Wh (LSD)                 | The total indication is given in max 3 groups of 3 digits.            |
| 14 | varh (MSD)               | varh                     | varh (LSD)               | The total indication is given in max 3 groups of 3 digits.            |
| 15 | V LL system              | AL.U                     | PF system                | AL.U= is activated only if one of VLN is not within the set limits.   |
| 16 | A MAX                    |                          |                          | max. current among the three phases                                   |
| 17 | A dmd max                |                          |                          | max. dmd current among the three phases                               |
| 18 | h                        |                          |                          | hour counter                                                          |

MSD: most significant digit LSD: least significant digit



1) Example of kWh visualization:

This example is showing 15 933 453.7 kWh

2) Example of kvarh visualization:

This example is showing 3 553 944.9 kvarh



#### Waveform of the signals that can be measured



 $\begin{array}{ll} \mbox{Figure A} & & \\ \mbox{Sine wave, undistorted} & & \\ \mbox{Fundamental content} & & 100\% \\ \mbox{Harmonic content} & & 0\% \\ \mbox{A}_{rms} = & & 1.1107 \left| \mbox{A} \right| \end{array}$ 



Figure B Sine wave, indented Fundamental content 10...100% Harmonic content 0...90% Frequency spectrum: 3rd to 16th harmonic Additional error: <1% FS



Figure C Sine wave, distorted Fundamental content 70...90% Harmonic content 10...30% Frequency spectrum: 3rd to 16th harmonic Additional error: <0.5% FS

#### Accuracy

kWh, accuracy (RDG) depending on the current



kvarh, accuracy (RDG) depending on the current



: this graph is only referred to instrument models with the "SG or PG" option.

: this graph is only referred to instrument models with the "X or S" option.

#### Used calculation formulas

| Phase variables<br>Instantaneous effective voltage                                              | Instantaneous apparent power<br>$VA_1 = V_{1N} \cdot A_1$                         | 3-phase active power<br>$W_{\Sigma} = W_1 + W_2 + W_3$                  |
|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| $V_{1N} = \sqrt{\frac{1}{n} \cdot \sum_{i}^{n} (V_{1N})_{i}^{2}}$                               | Instantaneous reactive power                                                      | 3-phase apparent power                                                  |
| Instantaneous active power<br>$W_1 = \frac{1}{p} \cdot \sum_{i=1}^{p} (V_{1N})_i \cdot (A_1)_i$ | $VAr_{1} = \sqrt{(VA_{1})^{2} - (W_{1})^{2}}$                                     | $VA_{\Sigma} = \sqrt{W_{\Sigma}^2 + VAr_{\Sigma}^2}$                    |
| 11 1                                                                                            | System variables                                                                  | 3-phase power factor                                                    |
| Instantaneous power factor<br>$cos\phi_1 = \frac{W_1}{VA_1}$                                    | Equivalent 3-phase voltage<br>$V_{\Sigma} = \frac{V_1 + V_2 + V_3}{3} * \sqrt{3}$ | $\cos\phi_{\Sigma} = \frac{W_{\Sigma}}{VA_{\Sigma}}$<br>Neutral current |
| Instantaneous effective current                                                                 | 3-phase reactive power                                                            | An = $\overline{A}_{L1} + \overline{A}_{L2} + \overline{A}_{L3}$        |
| $A_1 = \sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n} (A_i)_i^2}$                                       | $VAr_{\Sigma} = (VAr_1 + VAr_2 + VAr_3)$                                          |                                                                         |



### Used calculation formulas (cont.)

$$kWh_{i} = \int_{t_{1}}^{t_{2}} P_{i}(t) dt \cong \Delta t \sum_{n_{1}}^{n_{2}} P_{n_{2}}$$
$$kVarh_{i} = \int_{t_{1}}^{t_{2}} Q_{i}(t) dt \cong \Delta t \sum_{n_{1}}^{n_{2}} Q_{n_{2}}$$

Energy metering Where: i = considered phase (L1, L2 or L3) P = active power Q = reactive power t<sub>1</sub>, t<sub>2</sub> = starting and ending time points of consumption recording n = time unit  $\Delta$ t=time interval between two successive power consumptions n<sub>1</sub>,n<sub>2</sub> = starting and ending discrete time points of consumption recording

# Wiring diagrams



NOTE: Only for "PG" and "SG" options: the current measuring inputs are galvanically insulated and therefore they can be connected to ground singly.

NOTE: For all models except for "PG" or "SG" the current inputs can be connected to the lines ONLY by means of current transformers. The direct connection is not allowed.

ATTENTION: only one ammeter input can be connected to earth, as shown in the electrical dia grams.



#### RS485 port connections



Fig. 7: a-Last instrument; b-1...n Instrument c-RS485/232 serial converter

# Front Panel Description



#### **Dimensions and Panel Cut-out**





1. Key-pad To program the configuration parameters and the display of the variables.

#### S

Key to enter programming and confirm selections;



- Keys to:
- programme values;
- select functions; - display measuring pages.
- 2. Display

96mm

- LED-type with alphanumeric indications to:
- display configuration parameters;
- display all the measured variables.



# Dual pulse output connections